The M/M/∞Service System with Ranked Servers in Heavy Traffic

Paperback Engels 1984 1984e druk 9783540133773
Verwachte levertijd ongeveer 9 werkdagen

Samenvatting

We are concerned here with a service facility consisting of a large (- finite) number of servers in parallel. The service times for all servers are identical, but there is a preferential ordering of the servers. Each newly arriving customer enters the lowest ranked available server and remains there until his service is completed. It is assumed that customers arrive according to a Poisson process of rate A , that all servers have exponentially distributed service times with rate ~ and that a = A/~ is large compared with 1. Generally, we are concerned with the stochastic properties of the random function N(s ,t) describing the number of busy servers among the first s ordered servers at time t. Most of the analysis is motivated by special applications of this model to telephone traffic. If one has a brunk line with s primary channels, but a large number (00) of secondary (overflow) channels, each newly arriving customer is assigned to one of the primary channels if any are free; otherwise, he is assigned to a secondary channel. The primary and secondary channels themselves could have a preferential ordering. For some purposes, it is convenient to imagine that they did even if an ordering is irrelevant.

Specificaties

ISBN13:9783540133773
Taal:Engels
Bindwijze:paperback
Aantal pagina's:129
Uitgever:Springer Berlin Heidelberg
Druk:1984

Lezersrecensies

Wees de eerste die een lezersrecensie schrijft!

Inhoudsopgave

1. Introduction.- 2. Limit properties for a » 1.- 3. Descriptive properties of the evolution.- 4. The overflow distribution.- 5. Joint distributions.- 6. A diffusion equation.- 7. Transient properties.- 8. Equilibrium properties of the diffusion equation.- 9. Equivalent random method.- Index of Notation.

Managementboek Top 100

Rubrieken

Populaire producten

    Personen

      Trefwoorden

        The M/M/∞Service System with Ranked Servers in Heavy Traffic